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Abstract
Quadratic operators are used in transforming the model Hamiltonian Ĥ of one
correlated and dispersive band in a unique positive semidefinite form coopting
both the kinetic and interacting parts of the Ĥ . The expression is used in
deducing exact ground states which are minimum energy eigenstates only of the
full Hamiltonian. It is shown in this framework that at half-filling, dispersive
bands can also provide ferromagnetism in exact terms through correlation
effects.

1. Introduction

Exact results for non-integrable many-body models open new perspectives in the description
and understanding of physical systems of large interest, or physical situations capturing
attention through unusual properties. Metallic ferromagnetism [1], superconductivity in ladder
systems [2], exotic phases in polymer chains [3], subtle conducting and insulating phases in
rare earth compounds [4], spontaneous ferroelectricity [5], stripes or checkerboards in two
dimensions [6], and metal–insulator transitions in two-dimensional disordered systems [7] are
some examples in this respect.

On the technical side this field is in fact almost completely open; hence several procedures
have been tested or are under development. Without being exhaustive, we exemplify below
some of these, for example process definition followed by unapproximated treatment of
model conditions [8], Hilbert space properties captured in the low density limit [9], equal
rigorous upper and lower bounds for the ground state energy [10], unitary transformation
of eigenfunctions and Hamiltonians [11], Schrieffer–Wolff transformations effectuated up to
infinite order [12], the optimal ground state method [13], and the use of positive semidefinite
operators and related techniques [14]. In the present paper we concentrate on and develop
the last of these methods since the procedure based on positive semidefinite operators often
penetrates into other techniques as well.

By using positive semidefinite operators (P̂) in deducing exact ground states (|�g〉),
one first casts the Hamiltonian (Ĥ) in a positive semidefinite form Ĥ = P̂ + C , where
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C is a constant depending on the coupling constants of the starting Ĥ . Since zero is the
minimum possible eigenvalue of P̂ , the unapproximated ground state is obtained from the
requirement P̂ |�g〉 = 0. In the process of transforming the starting Hamiltonian into a
positive semidefinite form, mostly one finds or uses P̂ = ∑nmax

n P̂n , where the number nmax

of different types of positive semidefinite terms can often reach even nmax = 8–10, their
structure being diverse, containing linear, bi-linear, cubic or quartic combinations of the starting
fermionic operators [15]. The requirement for the ground state in the presence of different P̂n

contributions becomes P̂n|�g〉 = 0 for all n ∈ [1, nmax]; hence the deduced |�g〉 represents
separately the ground states of different parts of the Hamiltonian, often the ground states
separately of the kinetic and interacting parts of Ĥ , which reduces considerably the application
possibilities of the method.

In this paper we overcome this inconvenience by using quadratic, e.g. nonlinear,
combinations of the starting fermionic operators in defining new non-fermionic operators Âi.
Here the index i represents a lattice site, but Âi is not local, and has a finite extent since it
captures contributions also from the neighborhood of the site i. The operators Âi are used in the
construction of a unique Ĝ = ∑

i Â†
i Âi positive semidefinite form, leading to the expression for

the transformed Hamiltonian Ĥ = Ĝ + C , containing a unique positive semidefinite operator,
namely Ĝ (the contribution C , as before, being a constant). Excepting the test of this procedure
taken at infinitely large on-site Coulomb repulsion [16], for finite and non-zero value of the
interaction this approach is for the first time applied here in this paper. The gain one achieves
is that now a unique positive semidefinite operator concentrates both the kinetic and interaction
parts of Ĥ . Hence the corresponding ground states are not independently eigenstates of the
kinetic and interacting parts, or independently eigenstates of different parts and terms from Ĥ ,
but only eigenstates with minimal energy of the full Hamiltonian.

Relating the studied Hamiltonian, one concentrates here on one-band correlated itinerant
systems holding as well spin–spin interactions. The model Hamiltonian is in this case
of extended Hubbard type (denoted hereafter by Ĥ0) containing also spin–spin interactions
ĤS; hence Ĥ = Ĥ0 + ĤS holds. Such a Hamiltonian structure is particularly often
debated in connection to Kondo lattices [17] or t–J type of models [18], but generally
emerges in the study of strong correlation effects when additional interactions between nearest
neighbours are taken into consideration [19], or real materials [20, 21] are described. We
further note that in the presence of strong correlations, similar models have also been used
in the study of charge-ordered states, and metal–insulator transitions in non-ferromagnetic
cases [22].

The here deduced exact eigenstates characterize dispersive bands at half-filling and are
localized and fully saturated ferromagnetic ground states only of the full Ĥ . At this point we
remark that the exact ferromagnetic ground states at finite concentration of carriers deduced up
to this moment are or are related to a specific band structure (flat band ferromagnetism [23],
or Lieb’s degenerate middle band ferromagnetism in a bipartite lattice [24]), or appear given
by the ability of the interaction to select the ground state from the existing minimum energy
eigenstates of the kinetic (not necessarily one-particle1) part [15]. Our results show that
arbitrary dispersive half-filled bands can be ferromagnetic in exact terms. Since only the
whole Hamiltonian provides these ground states, these do not emerge given by a specific band
structure, or appear as interaction selected ground states from existing eigenstates of other parts
of the Hamiltonian, but are created by both kinetic and interaction contributions; hence their
eigenstate nature disappears when the interactions are turned off, or when the kinetic part is
neglected (e.g. in the localized limit).

1 We include here also bond-charge terms in the kinetic part of Ĥ .
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The remaining part of the paper is structured as follows. Section 2 describes the model
used, section 3 presents the exact transformation of the Hamiltonian in positive semidefinite
form, section 4 gives the general expression for the deduced ground states and presents the
proof of the ground state nature, section 5 describes particular cases when the deduced ground
states hold and analyzes the physical properties of the solutions. Finally, section 6 concluding
the paper, closes the presentation.

2. The Hamiltonian used

Our starting Hamiltonian Ĥ = Ĥ0 + ĤS describes in one dimension a correlated band
characterized by

Ĥ0 =
∑

i,σ

(tσ ĉ†
i,σ ĉi+1,σ + H.c.) + U

∑

i

n̂i,↑n̂i,↓ +
∑

i

∑

σ1,σ2

Vσ1,σ2 n̂i,σ1 n̂i+1,σ2 ,

+
∑

i,σ

(W1,σ n̂i,−σ ĉ†
i,σ ĉi+1,σ + W2,σ n̂i+1,−σ ĉ†

i+1,σ ĉi,σ + H.c.), (1)

where ĉ†
i,σ creates an electron with spin σ at the site i, n̂i,σ = ĉ†

i,σ ĉi,σ represents the particle
number operator, tσ is the hopping matrix element, U represents the Hubbard term, Vσ1,σ2 gives
the density–density nearest neighbor interaction strengths, while Wl,σ , l = 1, 2, describes the
correlated hopping.

Inside the band, also a nearest neighbor spin–spin interaction is present given by

ĤS =
∑

i

[

Jz Ŝz
i Ŝz

i+1 + J⊥
2

(Ŝ+
i Ŝ−

i+1 + Ŝ−
i Ŝ+

i+1)

]

, (2)

where Ŝ± = Ŝx ± iŜ y , �̂Si = ∑
α,β ĉ†

i,α �σα,β ĉi,β , and �σα,β describes the Pauli matrices. Within
this paper periodic boundary conditions are used.

3. The transformation of the Hamiltonian

In order to deduce exact ground states for the Hamiltonian of the problem one transforms Ĥ
into a unique positive semidefinite form. In order to do this we introduce a bi-linear operator
Âi defined by

Âi = z1ĉ†
i+1,↑ĉ†

i,↓ + z2ĉ†
i+1,↓ĉ†

i,↑ + z3ĉ†
i+1,↑ĉ†

i+1,↓ + z4ĉ†
i,↑ĉ†

i,↓
+ w1ĉi+1,↑ĉi,↓ + w2ĉi+1,↓ĉi,↑ + w3ĉi+1,↑ĉi+1,↓ + w4ĉi,↑ĉi,↓, (3)

where the prefactors zθ , wθ , θ = 1, 2, 3, 4, are considered site independent numerical
parameters. One observes that

∑
i Â†

i Âi reproduces the operators contained in
equations (1), (2), and indeed one finds that the exact mapping

Ĥ =
∑

i

Â†
i Âi − a1 N̂ − a0 (4)

holds, if the numerical coefficients zθ , wθ , aσ , a0 are defined via the following matching
conditions:

a0

N�

= −a1 =
4∑

θ=1

|zθ |2, t↑ = z∗
3z2 − z∗

1z4,

t↓ = z∗
2z4 − z∗

3z1, V↑,↑ + Jz

4
= V↓,↓ + Jz

4
= 0,

V↑,↓ − Jz

4
= |z2|2 + |w2|2, V↓,↑ − Jz

4
= |z1|2 + |w1|2,
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U = |z3|2 + |z4|2 + |w3|2 + |w4|2, J⊥
2

= w∗
1w2 + z∗

2z1,

w∗
3w1 + z∗

1z3 = W2,↓, w∗
3w2 + z∗

2z3 = −W2,↑,

w∗
4w2 + z∗

2z4 = −W1,↓, w∗
4w1 + z∗

1z4 = W1,↑,

w∗
3w4 + z∗

4z3 = F, w∗
1 z2 + w∗

2 z1 + w∗
3 z4 + w∗

4 z3 = 0,

(5)

where N� represents the number of lattice sites, and N̂ is the total particle number operator.
Since the total number of particles is a constant of motion, via equation (4) we matched the
starting Hamiltonian into a unique positive semidefinite form using the conditions presented in
equation (5).

4. The exact ground state at half-filling

Let us consider the bond operator

B̂†
i = α↑ĉ†

i,↑ + α↓ĉ†
i,↓ + β↑ĉ†

i+1,↑ + β↓ĉ†
i+1,↓, (6)

where ασ and βσ are numerical prefactors. One observes that {B̂†
i , B̂†

j } = 0 holds for all i, j
and all ασ , βσ .

Let us analyze the wavefunction

|�g〉 =
N�∏

i=1

B̂†
i |0〉, (7)

where |0〉 is the bare vacuum with no fermions present. Since in equation (7) one introduces
N� electrons into the system, |�g〉 is defined at half-filling.

If for all i one has

Âi|�g〉 = 0, (8)

then clearly |�g〉 represents the ground state wavefunction of Ĥ . Since the fermionic operators
from Âi in equation (3) are present in

∏
j B̂†

j only in B̂†
i , B̂†

i±1, it results that in order to satisfy
equation (8) one must have for all i sites

Âi B̂
†
i [B̂†

i−1 B̂†
i+1]|0〉 = 0, (9)

from where one finds
z1β↓ − z3α↓ = 0, z2β↑ + z3α↑ = 0,

z1α↑ − z4β↑ = 0, z2α↓ + z4β↓ = 0,

w1(α
2
↑β↓ − α↑α↓β↑) + w3(β

2
↑α↓ − β↑β↓α↑) = 0,

w2(α
2
↓β↑ − α↑α↓β↓) − w3(β

2
↓α↑ − β↑β↓α↓) = 0,

w4(α
2
↓β↑ − α↑α↓β↓) + w1(β

2
↓α↑ − β↑β↓α↓) = 0,

−w4(α
2
↑β↓ − α↑α↓β↑) + w2(β

2
↑α↓ − β↑β↓α↑) = 0,

−w4(β
2
↓α↑ − β↑β↓α↓) − w1β

2
↓β↑ − w2β

2
↓β↑ = 0,

w4(β
2
↑α↓ − β↑β↓α↑) − w1β

2
↑β↓ − w2β

2
↑β↓ = 0,

w3(α
2
↓β↑ − α↑α↓β↓) − w1α

2
↓α↑ − w2α

2
↓α↑ = 0,

−w3(α
2
↑β↓ − α↑α↓β↑) − w1α

2
↑α↓ − w2α

2
↑α↓ = 0.

(10)

In equation (10) the first row comes from the coefficients of the terms containing three creation
operators created by the product Âi B̂

†
i , while the remaining equations are provided by the rest

of the terms from equation (9).
On the basis of equations (4), (8), the ground state energy is given by Eg = −a0 − a1 N .
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5. The deduced solutions

In the following one presents the obtained solutions for the system of equations (5), (10)
denoted by solutions I and II which describe two different regions of the phase diagram.

5.1. Solution I

Taking into consideration W1,σ = W2,σ = W , the parameters of the Âi, B̂i operators become

z2 = −z1, z3 = qz1eiα, z4 = z1

q
e−iα,

w1 = z1

2

( |q|2 − 1

q

)

, w2 = −w1, w3 = − z1q∗

q
e−iα,

w4 = z1eiα, α↑ = λα↓, β↑ = λqα↓eiα, β↓ = qα↓eiα,

(11)

where z1, α, α↓, λ, q remain arbitrary coefficients at the level of (11). The Hamiltonian
parameters turn out to have the property t = tσ , V1 = Vσ,σ , V2 = Vσ,−σ , a0 = U N�, a1 = −U ,
and one has

W = − t

2
, V1 = − Jz

4
, V2 = U + Jz

4
, J⊥ = −U

2
, (12)

where U > 0, t and Jz can be arbitrarily chosen, and the parameters |z1|, |q|, α become
determined by |z1| = |t|/√U , (1 + |q|2)/|q| = |t|/|z1|2, and e−iα = (q/|q|) sgn(t).
The coefficients λ and α↓ remain arbitrary, and the operator constructing the ground state
wavefunction from (7) becomes

B̂†
i = α↓[(ĉ†

i,↓ + λĉ†
i,↑) + qeiα(ĉ†

i+1,↓ + λĉ†
i+1,↑)]. (13)

5.2. Solution II

If one considers W1,σ = W1, W2,σ = W2 and takes ν = z3/w4 = −w∗
3/z∗

4 non-zero and real,
the parameters of Âi, B̂i operators become

z2 = −z1, z3 = Peiαz1, z4 = e−iα

P
z1, w1 = −z1,

w2 = z1, w3 = −ν
e−iα

P
z1, w4 = 1

ν
Peiαz1,

α↑ = λα↓, β↑ = λPeiαα↓, β↓ = Peiαα↓,

(14)

where P =
√

|ν|/(√2 + sgn(ν)), α is given by sgn(t) = −e−iα, and z1, α↓, λ, ν are arbitrary

non-zero coefficients. Furthermore one has a1 = a0/N� = √
W1W2/2(2 + P2 + P−2), and

the Hamiltonian parameters become

W1 = − sgn(t)

√
2|z1|2
|ν|

√
P, W2 = − sgn(t)

√
2|z1|2|ν|

√
P−1,

J⊥ = −√
2W1W2, V1 = − Jz

4
, V2 = Jz

4
− J⊥,

t = − 1√
2

(
W2

|ν| + |ν|W1

)

, U = 1 + |ν|2
|ν|√2W1W2

(

|ν|W 2
1 + W 2

2

|ν|
)

,

(15)

where ν, Jz remain arbitrary, sgn(W1) = sgn(W2) must hold, and one has |z1|2 = √
W1W2/2.

The operator present in the expression for the ground state wavefunction (7) is given by

B̂†
i = α↓[(λĉ†

i,↑ + ĉ†
i,↓) − P sgn(t)(λĉ†

i+1,↑ + ĉ†
i+1,↓)], (16)

so its form is similar to that given in equation (13).

5
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5.3. Physical properties of the deduced solutions

For the ground state (7), in both obtained cases (13), (16) describing different regions of the
phase diagram, the B̂†

i operator is constructed from Î †
i = (λĉ†

j,↑+ĉ†
j,↓) type of blocks, for which

Î †
j Î †

j = 0 holds for arbitrary λ. Consequently, apart from a normalization constant,
∏N�

i=1 B̂†
i |0〉

from (7) becomes
∏N�

i=1 Î †
i |0〉; hence the normalized ground state in both cases of solutions I

and II can be written as

|�g〉 = (1 + |λ|2)−N�/2
N�∏

i=1

(λĉ†
j,↑ + ĉ†

j,↓)|0〉, (17)

where λ is arbitrary, and N = N� in (17) fixes the filling at half. Denoting by 〈· · ·〉 =
〈�g| · · · |�g〉 ground state expectation values, and using as usual Ŝz

i = 1/2(n̂i,↑ − n̂i,↓),

Ŝ+
i = (Ŝ−)

†
i = ĉ†

i,↑ĉi,↓, Ŝ±
i = Ŝx

i ± iŜ y
i , and �̂S = ∑

i
�̂Si for the spin operators, one finds

〈Ŝ2〉 = (N�/2)(N�/2 + 1). This result is motivated by the fact that since λ is the same on
each i, the local spin orientations are the same on each site. Hence the ground state represents a
fully saturated ferromagnetic state. Furthermore, since only local Hamiltonian terms contribute
in the ground state energy, and independent of i, 〈n̂i,↑〉 = 1 − 〈n̂i,↓〉 = |λ|2/(1 + |λ|2),
〈n̂i,↑n̂i,↓〉 = 0, the ground state is localized [4]. Consequently, the obtained ground state at
half-filling of the studied model with one (dispersive) band is a localized and fully polarized
ferromagnet.

Note the important aspect that |�g〉 is the ground state only of the full Hamiltonian. Hence
no specific band structure produces here the ferromagnetic behavior (as for example in the
case of the flat band ferromagnetism [23], or Lieb’s degenerate middle band magnetism in a
bipartite lattice [24]), nor do the interactions select the ground state from the minimum energy
eigenstates of the kinetic part2 (see footnote 1). In the described case the ferromagnetism at
half-filling can appear in exact terms in an arbitrary dispersive band being only the ground state
of the full Hamiltonian, e.g. is provided by an incontestable correlation effect.

As described previously in detail [4, 6], for a non-integrable model such as that studied
here, exact ground states can be obtained only on different cuts of the phase diagram
corresponding to different decompositions in positive semidefinite form of the starting
Hamiltonian. Since for the two solutions presented in sections 5.1, 5.2, the expression for
the operator Âi is different, these solutions correspond to different decompositions, and hence
provide the deduced ground state in different regions of the phase diagram. The fact that the
same solution appears in different regions underlines the stability of the ferromagnetic phase,
since finite Ĥ parameter modifications lead back to the same ordered phase. However, the
ferromagnetic localized phase has a finite extension. This is seen from the fact that since |�g〉
is not an eigenstate of the non-interacting Hamiltonian, turning off the interactions one recovers
the conducting behavior of a non-interacting dispersive band, e.g. a paramagnetic metal to
ferromagnetic insulator transition must be present in the phase diagram of the system.

We further note that resembling ferromagnetic states have been found in similar systems
by other methods as well [25–27].

6. Summary and conclusions

Single-band extended Hubbard models containing spin–spin interactions are studied by a
positive semidefinite operator technique, leading to ferromagnetic and localized exact ground

2 This is the case when several positive semidefinite operators are used in the expression for the transformed
Hamiltonian.
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states in different regions of the phase diagram via quadratic operators used in the positive
semidefinite decomposition leading to a unique operator term in Ĥ . Hence the deduced ground
states are minimum energy eigenstates only of the full Hamiltonian, e.g. are not connected to a
specific band structure, nor are they separately eigenstates of the kinetic and interacting parts.
The ferromagnetism emerges at half-filling in an arbitrary dispersive band, being provided by
clear correlation effects.
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